After more than 10 years based in #Gothenburg, ConScience AB has expanded to neighbouring country Denmark, and opened a subsidiary operating from the cleanroom @DTUNanolab #nanofabrication #quantum https://t.co/CJ1HxpOitD pic.twitter.com/NQuhGJoGIT
— ConScience (@ConScienceAB) May 7, 2024
Swedish Company ConScience AB Launch First Generation Quantum Device đź‘Ź@ConScienceAB is launching a Qubit-in- a-box (QiB0) quantum device. The device can be used to demonstrate simple quantum processes. https://t.co/h2qg2Z7MpK #quantumdevice #quantumprocesses #qubit
— The Quantum Insider (@QuantumDaily) January 30, 2024
We enable cutting-edge research and product development. Thanks to our streamlined processes and expert customization, we can offer both cost-effective and high-quality solutions.
These systems are widely used in cell-biology research and enable measuring molecular interactions with high precision
Both industrial and academic applications—for example, AR, metalenses, DOEs, HEMTs and quantum computing—profit from the resolution and versatility of EBL
Nanoplasmonics allows the detection of objects and reagents at extremely low concentrations or with utmost selectivity
Leading-edge superconducting Al and III/V process technology, used to serve emerging quantum technology and semiconductor markets
High expertise
Cleanroom with state-of-the-art
nanofabrication tools
Consultancy services and customization
Short lead times made possible by long experience
Cost-effective solutions
Joachim Fritzsche, PhD is a physicist, entrepreneur, and co-founder of ConScience. His expertise lies in nanofabrication, and he has 16 years of experience in hands-on cleanroom work within both academia and enterprise. That is why he can provide excellent consultancy services and project management to our clients.
Joachim studied physics in Germany and the United Kingdom, and acquired his PhD in Leuven, Belgium, in the field of superconductors and semiconductors. He joined the Biophysics group at Gothenburg University, before focusing on nanoplasmonic sensing and nanofuidic systems at Chalmers, Sweden. Joachim started ConScience together with Annelies Vanbrabant in 2012.
[UNIVERSITIES]
Harvard University (US)
Carnegie Mellon University (US)
UMASS – University of Massachusetts Medical School (US)
Oklahoma State University (US)
UCSD – University of California San Diego (US)
University of Cambridge (UK)
University of Oxford (UK)
Newcastle University (UK)
Queen Mary UNiversity of London (UK)
Nanyang Technological University (Singapore)
Katholieke Universiteit Leuven (Belgium)
Liege Université (Belgium)
Universite ConCordia (Canada)
Universidad Politécnica de Madrid (Spain)
Institute of Materials Science of Barcelona (Spain)
Chalmers University of Technology (Sweden)
Uppsala University (Sweden)
University of Wollongong (Australia)
University of Oslo (Norway)
Université Paris Sud (France)
Humboldt Universität zu Berlin (Germany)
Technical University Delft (Netherlands)
[RESEARCH CENTERS]
Max-Planck Institut Marburg (Germany)
Forschungszentrum JĂĽlich (Germany)
RISE (Sweden)
N N Blokhin Russian Cancer Research Center (Russia)
[INDUSTRY]
Nanoxis (Sweden)
SiTek (Sweden)
Insplorion (Sweden)
Nanolyze (Sweden)
Astrego Diagnostics (Sweden)
Fluicell (Sweden)
NILT (Denmark)
GIAMAG (Norway)
AZO Network (UK)
Examples of cutting-edge research that our nanofabrication expertise has made possible:
Jones, D. et al. Kinetics Of dCas9 Target Search In Escherichia Coli. Science 2017, 357, 1420-1424. DOI: 10.1126/science.aah7084
Hammar, P. et al. Direct Measurement Of Transcription Factor Dissociation Excludes A Simple Operator Occupancy Model For Gene Regulation. Nature Genetics 2014, 46, 405-408. DOI:10.1038/ng.2905
Dreos, A. et al. Exploring The Potential Of A Hybrid Device Combining Solar Water Heating And Molecular Solar Thermal Energy Storage. Energy & Environmental Science 2017, 10, 728-734. DOI: 10.1039/C6EE01952H
MĂĽller, V. et al. Rapid Tracing Of Resistance Plasmids In A Nosocomial Outbreak Using Optical DNA Mapping. ACS Infectious Diseases 2016, 2, 322-328. DOI: 10.1021/acsinfecdis.6b00017
Xu, X. et al. Directed assembly of multiplexed single chirality carbon nanotube devices. Journal of Applied Physics 129, 024305 (2021); DOI: 10.1063/5.0035820
Clement, P. et al. Direct Synthesis of Multiplexed Metal-Nanowire-Based Devices by Using Carbon Nanotubes as Vector Templates. Angew. Chem. Int. Ed. 2019, 58, 9928 –9932 DOI: 10.1002/anie.201902857
Kipper, K. et al. Application Of Noncanonical Amino Acids For Protein Labeling In A Genomically Recoded Escherichia Coli. ACS Synthetic Biology 2016, 6, 233-255. DOI: 10.1021/acssynbio.6b00138
Motta, M. et al. Enhanced Pinning In Superconducting Thin Films With Graded Pinning Landscapes. Applied Physics Letters 2013, 102, 212601. DOI: 10.1063/1.4807848
Wallden, M. et al. The Synchronization Of Replication And Division Cycles In Individual E. Coli Cells. Cell 2016, 166, 729-739. DOI: 10.1016/j.cell.2016.06.052
Fornander, L. et al. Visualizing The Nonhomogeneous Structure Of RAD51 Filaments Using Nanofluidic Channels. Langmuir 2016, 32, 8403-8412. DOI: 10.1021/acs.langmuir.6b01877
Friedrich, R. et al. A Nano Flow Cytometer For Single Lipid Vesicle Analysis. Lab on a Chip 2017, 17, 830-841. DOI: 10.1039/C6LC01302C
Frykholm, K. et al. Fast Size-Determination Of Intact Bacterial Plasmids Using Nanofluidic Channels. Lab on a Chip 2015, 15, 2739-2743. DOI: 10.1039/C5LC00378D
Paintdakhi, A. et al. Oufti: An Integrated Software Package For High-Accuracy, High-Throughput Quantitative Microscopy Analysis. Molecular Microbiology 2015, 99, 767-777. DOI: 10.1111/mmi.13264
Lawson, M. et al. In Situ Genotyping Of A Pooled Strain Library After Characterizing Complex Phenotypes. Molecular Systems Biology 2017, 13, 947. DOI: 10.15252/msb.20177951
Baltekin, Ă–. et al. Antibiotic Susceptibility Testing In Less Than 30 Min Using Direct Single-Cell Imaging. Proceedings of the National Academy of Sciences 2017, 114, 9170-9175. DOI: 10.1073/pnas.1708558114
Sanamrad, A. et al. Single-Particle Tracking Reveals That Free Ribosomal Subunits Are Not Excluded From The Escherichia Coli Nucleoid. Proceedings of the National Academy of Sciences 2014, 111, 11413-11418. DOI: 10.1073/pnas.1411558111
Marklund, E. et al. Transcription-Factor Binding And Sliding On DNA Studied Using Micro- And Macroscopic Models. Proceedings of the National Academy of Sciences 2013, 110, 19796-19801. DOI: 10.1073/pnas.1307905110
Nyberg, L. et al. Rapid Identification Of Intact Bacterial Resistance Plasmids Via Optical Mapping Of Single DNA Molecules. Scientific Reports 2016, 6. DOI: 10.1038/srep30410
Persson, F. et al. Lipid-Based Passivation In Nanofluidics. Nano Letters 2012, 12, 2260-2265. DOI: 10.1021/nl204535h
Tanyeli, I. et al. Nanoplasmonic NO2 Sensor With A Sub-10 Parts Per Billion Limit Of Detection In Urban Air. ACS Sensors 2022, 7, 1008-1018. DOI: 10.1021/acssensors.1c02463
Levin, S. et al. A Nanofluidic Device For Parallel Single Nanoparticle Catalysis In Solution. Nature Communications 2019, 10, 4426. DOI: 10.1038/s41467-019-12458-1
Alekseeva, S. et al. Grain-Growth Mediated Hydrogen Sorption Kinetics and Compensation Effect in Single Pd Nanoparticles. Nature Communications 2021, 12, 5427. DOI: 10.1038/s41467-021-25660-x
Alekseeva, S. et al. Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles. Nature Communications 2017, 8, 1084. DOI: 10.1038/s41467-017-00879-9
Syrenova, S. et al. Hydride Formation Thermodynamics and Hysteresis in Individual Pd Nanocrystals with Different Size and Shape. Nature Materials 2015, 14, 1236-1244. DOI: 10.1038/nmat4409
Syrenova, S. et al. Shrinking-Hole Colloidal Lithography: Self- Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Letters 2014, 14 (5), 2655- 2663. DOI: 10.1021/nl500514y
Börjesson, K. et al. Photon Upconversion Facilitated Molecular Solar Energy Storage. Journal of Materials Chemistry A 2013, 1, 8521. DOI: 10.1039/C3TA12002C
Dreos, A. et al. Exploring The Potential Of A Hybrid Device Combining Solar Water Heating And Molecular Solar Thermal Energy Storage. Energy & Environmental Science 2017, 10, 728-734. DOI: 10.1039/C6EE01952H
Wang, Z. et al. Liquid-Based Multijunction Molecular Solar Thermal Energy Collection Device. Advanced Science 2021, 8, 2103060. DOI: 10.1002/advs.202103060
Xu, X. et al. Tuning Electrostatic Gating Of Semiconducting Carbon Nanotubes By Controlling Protein Orientation In Biosensing Devices. Angewandte Chemie 2021, 133, 20346-20351. DOI: 10.1002/ange.202104044
T: +46 (0)738 92 08 67
E: info@con-science.se
Headquarters (Sweden):
ConScience AB
Stena Center
Läraregatan 3
SE - 411 33 Göteborg
Sweden
VAT number: SE559008057701
Subsidiary (Denmark):
ConScience ApS
DTU Science Park
Building 373, Diplomvej
2800, Kongens Lyngby
Denmark
VAT number: DK44670909
© ConScience AB 2024